岩手県工業技術研究推進会議 材料技術部会議事録

(実施日)

平成16年10月26日(火)

(テーマ名)

軽希土類系酸化物超電導バルク体の大型化技術の開発 (事後評価)

委員 質問・意見 回 答	t、組成が異なって のために4 ~ 5 cmを
元の距電等体の人ささは? 接音によりてこの住民の人ささ いるが、当面の目標は3T(テスラ)トラップ(t、組成が異なって のために4 ~ 5 cmを
A委員 応用化はどのようになっているのか? バルク材は水浄化装置に応用されている 導モーターなども試作されている。	。電力貯蔵、超電
開発した材料を超電導モータに応用すれ 県内企業にこだわらない開発も必要ではないか?	
超電導体の大型化のために接合技術は非常に重要。Agを添加することによって融点が下がるのはなぜか? D委員	
測定はしていない。強度を向上させるため 会浸している。このことによって、強度的な る。	
H委員 バイオリアクターや医療分野への応用の方がよいのではない (バイオリアクター等への応用の場合は)起が異なっている。開発した材料は、超電導 応用を検討している。	
いい素材を生かすようなアンテナを張って、応用化を検討し (所長) (所長) てはどうか?その際は、地域にこだわらないで展開してほし 投資金額も多いので、応用化の道が開けい。	たら、検討を行いた
F委員 水浄化への応用結果を把握しているか? 研究グループが別であり、データは無い。	
E委員 試作した超電導体は、熱疲労強度には問題があると思う 熱疲労強度については、実用化に向けて が? も研究が進められている。	超電導研究所等で