座標測定機のスキャニング測定*

和合 健**、池 浩之**

座標測定機の連続的な倣い測定、所謂スキャニング測定は、従来カーブ形状評価 のみに使用されていたが、円や立方体など幾何形体の座標測定の高精度化や高速化 に有利である。ここでは円筒型基準器についてスキャニング測定を行い測定誤差に ついて評価した。その結果、真円度では点測定とスキャニング測定の差は平均値で 0.0022mm となりスキャニング測定の動的誤差は無視できるほど小さいことを確認 した。

キーワード:座標測定機、スキャニング測定、シリンダー形状測定物、分散分析

Scanning Measurement by Coordinate-Measuring Machine

Takeshi Wago and Hiroyuki Ike

Scanning measurements made by coordinate-measuring machines (CMMs) are used to measure curve shapes and can make high-speed and high-precision measurements. In this paper we estimate measurement deviations for a scanning measurement made by a CMM. The difference, which is the mean between point measurements and scanning measurements, is 0.0022 mm, which is sufficiently small to be ignored.

key words : coordinate-measuring machine, scanning measurement, cylinder artifact, anova

1緒 言

座標測定機(以下、CMM という)の通常測定では、 プロービングにより取得した1点毎の集まりである離散 点により円、平面などの幾何学形状を計算で求めていた。 従来、カーブ形状評価のみに使用されていた連続的な做 い(スキャニング)測定は、円や立方体など幾何形体の座 標測定の高精度化や高速化に有利である。

ここでは、産業技術連携推進会議知的基盤部会計測分 科会形状計測研究会の共同研究としてパイロットラボが 示すプロトコルに従い、ポイント測定とスキャニング測 定を同一の基準器で行い、それぞれの測定誤差について 評価した。

2 実験方法

2-1 測定装置

実験に使用した CMM は、型式が UPMC550-CARAT、 メーカは Carl Zeiss、ソフトウエアの OS は Windows XP、 CMM のソフトウエア及びバージョンは UMESS-LX Ver1.0、最終メーカ校正日は平成 20 年 3 月 14 日である。 CMM は門移動型の構造でプローブはパラレルツイン式 である。CMM の指示誤差は MPE_E=0.8+L/600µm(L は 測定長さ mm)である。

^{*} 平成 22 年度 産業技術連携推進会議知的基盤部会計測分科会形状計測研究会(共同研究)

^{**} 材料技術部(現素形材技術部)

図6 スタイラスの向き

基準器は図1に示す円筒型で上端面から5mm間隔で 異なる表面性状を付与したものでH1~H6まで6水準を 与えた。基準器の材質はSKS3であり、チップ材質をル ビーとした場合に溶着の恐れが無い。

2-2 測定技法

パイロットラボが示したプロトコルでの指示事項は すべて行われ、すべての測定を CNC 自動測定で行った。 円筒ワークピースの固定は、ワークピース材質が鉄系で あることからマグネット治具により図2及び図3の形態 で吸着固定した。マスター球の保持方法は、図4のとお り円筒ワークピースと同様にマグネット治具で吸着固定 した。球測定で特に注意した点は、図5のとおりスタイ ラス校正時と同等のZ高さ位置になるように調整した点 である。CMM 定盤からのZ高さはマスター球が275mm、 校正球が215mm であり、その差は60mm であった。図6 に使用したスタイラスの向きを示す。チップ径は 48mm と 45mmの2水準とし、スタイラスの長さは同等に揃え た。

3 因子と水準

表1に因子と水準を示す。測定方法が円筒スキャニン グの測定値点数は、チップ径2種類×スキャニング速度2 種類×測定力2種類×スタイラスの向き2種類×円筒ワー クピース材質2種類×測定高さ6箇所×測定の繰り返し3 回で合計576点となる。測定方法が円筒ポイント測定の 測定値点数は、スタイラスの向き2種類×円筒ワークピ ース材質2種類×測定高さ6箇所×測定の繰り返し3回で 合計72点となる。測定方法が球スキャニングの測定値点 数は、チップ径2種類×スキャニング速度2種類×測定力 2種類×スタイラスの向き2種類×測定の繰り返し3回で 合計48点となる。測定項目は、直径、真円度、中心座標 X、中心座標Yとした。

4 ワークピースの温度及び温度測定方法

温度変動による熱膨張補正は CNC プログラム内に熱 膨張補正コマンドを入れて自動で補正した。温度センサ はワークピース表面の2箇所に設置した。測定中の温度 を CMM 定盤上にデータロガーをおいて測定周期 10 分 で温度測定した結果、最大値 19.4℃、最小値 18.7℃、変 動幅 0.7℃、平均値 19.0℃であった。環境温度の平均値が 19.0℃であり標準温度の 20℃から低めの温度環境となっ ていたが、温度変動幅は全体を通して0.7℃であり良好な 温度環境であった。

5 実験結果及び考察

5-1 分散分析

得られた直径、真円度、中心座標 X、中心座標 Y の 4 つの測定項目毎に分散分析¹⁾を行い、表 2 に円筒スキャ ニング(直径、真円度)、表 3 に円筒ポイント(直径、真 円度)、表 4 に球スキャニング(直径、真円度)の分散分 析結果を示す。円筒スキャニングと円筒ポイントの測定

表1 因子と水準

円同人ナヤーンク									
因子		水準							
	<u>1</u>	1	2	3	4	5	6		
Α	チップ径(mm)	φ8	φ5	-	1	1	-		
В	速度(mm/s)	5	10	-	1	1	-		
С	測定力(N)	0.2	0.1	-	-	-	-		
D	スタイラスの向き	Z軸	X軸	-	-	-	-		
Е	材質	S35C	SKS3	-	-	-	-		
F	位置	H1	H2	H3	H4	H5	H6		
G	繰り返し(times)	rp1	rp2	rp3	-	-	-		

円筒ポイント

因子		水準						
		1	2	3	4	5	6	
Α	チップ径(mm)	φ8	-	-	-	-	-	
В	速度(mm/s)	一定	1	-	1	-	-	
С	測定力(N)	0.2	1	-	1	-	-	
D	スタイラスの向き	Z軸	X軸	-	1	-	-	
Е	材質	S35C	SKS3	-	-	-	-	
F	位置	H1	H2	H3	H4	H5	H6	
G	繰り返し(times)	rp1	rp2	rp3	-	-	-	

球スキャニング

	因子	水準					
	100 A	1	2	3			
А	チップ径(mm)	φ8	φ5	-			
В	速度(mm/s)	3	6	-			
С	測定力(N)	0.2	0.1	-			
D	スタイラスの向き	Z軸	X軸	-			
Е	繰り返し(times)	rpl	rp2	rp3			

表2 円筒スキャニング(直径)及び(真円度)の結果

円筒スキャニング(直径) (mm ²)							
Factor	f	S	V	F	E(V)	σ (mm)	
A チップ径(mm)	1	0.00	0.00001	2.46	$\sigma_{e}^{2}+288 \sigma_{A}^{2}$	0.0002	
B 速度(mm/s)	1	0.00	0.00000	0.05	σ_e^2 +288 σ_B^2	NaN	
C 測定力(N)	1	0.00	0.00000	0.10	σ_{e}^{2} +288 σ_{C}^{2}	NaN	
D スタイラスの向き	1	0.00	0.00000	1.27	$\sigma_{e}^{2}+288 \sigma_{D}^{2}$	NaN	
E 材質	1	0.00	0.00022	68.39	$\sigma_{e}^{2}+288 \sigma_{E}^{2}$	0.0009	
F 位置	5	2.34	0.46713	146251.4	$\sigma_e^2 + 96 \sigma_F^2$	0.0698	
G 繰り返し(times)	2	0.00	0.00000	0.00	σ_{e}^{2} +192 σ_{G}^{2}	NaN	
e 誤差	563	0.00	0.00000	-	σ_e^2	0.0018	
т 会計	575	2 34	-				
1 [] []	515	2.54		-			
円筒スキャニング(真	<u>(</u> 円度	<u>;</u>)		-	(mm ²)		
円筒スキャニング(重 Factor	575 【円度 <i>f</i>	E) S	V	F	(mm ²) <i>E(V)</i>	σ (mm)	
T日前 円筒スキャニング(引 Factor A チップ径(mm)	5/15 〔円度 <u>f</u> 1	2.34 () () () () () () () () () () () () ()	V 0.00004	F 28.23	$\frac{(\text{mm}^2)}{E(V)}$ $\sigma_{e}^{2}+288 \sigma_{A}^{2}$	σ (mm) 0.0004	
円筒スキャニング(J Factor A チップ径(mm) B 速度(mm/s)	€円度 <u>f</u> 1	E) S 0.00 0.00	V 0.00004 0.00000	F 28.23 0.14	(mm^{2}) $E(V)$ $\sigma_{e}^{2}+288 \sigma_{A}^{2}$ $\sigma_{e}^{2}+288 \sigma_{B}^{2}$	σ (mm) 0.0004 NaN	
 円筒スキャニング(J Factor A チップ径(mm) B 速度(mm/s) C 測定力(N) 	E円度 f 1 1 1	5) 5 0.00 0.00 0.00	V 0.00004 0.00000 0.00000	<i>F</i> 28.23 0.14 1.72	(mm^{2}) $E(V)$ $\sigma_{e}^{2}+288 \sigma_{A}^{2}$ $\sigma_{e}^{2}+288 \sigma_{B}^{2}$ $\sigma_{e}^{2}+288 \sigma_{C}^{2}$	σ (mm) 0.0004 NaN NaN	
円筒スキャニング(夏 Factor A チップ径(mm) B 速度(mm/s) C 測定力(N) D スタイラスの向き	<u>東円度</u> <u>f</u> 1 1 1	E) S 0.00 0.00 0.00 0.00	V 0.00004 0.00000 0.00000 0.00000	<i>F</i> 28.23 0.14 1.72 0.91	$\frac{(mm^{2})}{E(V)}$ $\frac{\sigma_{e}^{2}+288 \sigma_{A}^{2}}{\sigma_{e}^{2}+288 \sigma_{B}^{2}}$ $\frac{\sigma_{e}^{2}+288 \sigma_{C}^{2}}{\sigma_{e}^{2}+288 \sigma_{D}^{2}}$	σ (mm) 0.0004 NaN NaN NaN	
 円筒スキャニング(夏 Factor A チップ径(mm) B 速度(mm/s) C 測定力(N) D スタイラスの向き E 材質 	其円度 f 1 1 1 1 1 1	E) S 0.00 0.00 0.00 0.00 0.00	V 0.00004 0.00000 0.00000 0.00000 0.00025	<i>F</i> 28.23 0.14 1.72 0.91 159.21	$\frac{(mm^{2})}{E(V)}$ $\frac{\sigma_{e}^{2}+288 \sigma_{A}^{2}}{\sigma_{e}^{2}+288 \sigma_{E}^{2}}$ $\frac{\sigma_{e}^{2}+288 \sigma_{E}^{2}}{\sigma_{e}^{2}+288 \sigma_{E}^{2}}$ $\frac{\sigma_{e}^{2}+288 \sigma_{E}^{2}}{\sigma_{e}^{2}+288 \sigma_{E}^{2}}$	σ (mm) 0.0004 NaN NaN 0.0009	
 円筒スキャニング(夏 Factor A チップ径(mm) B 速度(mm/s) C 測定力(N) D スタイラスの向き E 材質 F 位置 	<u>第円度</u> <u>f</u> 1 1 1 1 5	5) 5 0.00 0.00 0.00 0.00 0.00 0.00 0.74	V 0.00004 0.00000 0.00000 0.00000 0.00025 0.14879	<i>F</i> 28.23 0.14 1.72 0.91 159.21 95693.4	(mm^{2}) $E(V)$ $\sigma_{e}^{2}+288 \sigma_{A}^{2}$ $\sigma_{e}^{2}+288 \sigma_{E}^{2}$ $\sigma_{e}^{2}+288 \sigma_{E}^{2}$ $\sigma_{e}^{2}+288 \sigma_{E}^{2}$ $\sigma_{e}^{2}+288 \sigma_{E}^{2}$ $\sigma_{e}^{2}+288 \sigma_{E}^{2}$ $\sigma_{e}^{2}+96 \sigma_{F}^{2}$	σ (mm) 0.0004 NaN NaN 0.0009 0.0394	
 円筒スキャニング(夏 Factor A チップ径(mm) B 速度(mm/s) C 測定力(N) D スタイラスの向き E 材質 F 位置 G 繰り返し(times) 	<u>東円度</u> <u>f</u> 1 1 1 1 5 2	5) 5 0.00 0.00 0.00 0.00 0.00 0.00 0.74 0.00	V 0.00004 0.00000 0.00000 0.00000 0.00025 0.14879 0.00000	<i>F</i> 28.23 0.14 1.72 0.91 159.21 95693.4 0.03	$(mm^{2}) = E(V) = \frac{\sigma_{e}^{2} + 288 \sigma_{A}^{2}}{\sigma_{e}^{2} + 288 \sigma_{E}^{2}} = \frac{\sigma_{e}^{2} + 288 \sigma_{E}^{2}}{\sigma_{e}^{2} + 288 \sigma_{D}^{2}} = \frac{\sigma_{e}^{2} + 288 \sigma_{E}^{2}}{\sigma_{e}^{2} + 288 \sigma_{E}^{2}} = \frac{\sigma_{e}^{2} + 288 \sigma_{E}^{2}}{\sigma_{e}^{2} + 96 \sigma_{F}^{2}} = \frac{\sigma_{e}^{2} + 96 \sigma_{F}^{2}}{\sigma_{e}^{2} + 192 \sigma_{G}^{2}}$	σ (mm) 0.0004 NaN NaN 0.0009 0.0394 NaN	
円筒スキャニング(夏 Factor A チップ径(mm) B 速度(mm/s) C 測定力(N) D スタイラスの向き E 材質 F 位置 G 繰り返し(times) e 誤差	<u> 東</u> 円度 <u> </u> <u> </u>	2.04 5 0.00 0.00 0.00 0.00 0.00 0.74 0.00 0.00	V 0.00004 0.00000 0.00000 0.00000 0.00025 0.14879 0.00000 0.00000	F 28.23 0.14 1.72 0.91 159.21 95693.4 0.03	$(mm^{2}) = E(V) = \frac{\sigma_{e}^{2} + 288 \sigma_{A}^{2}}{\sigma_{e}^{2} + 288 \sigma_{B}^{2}} = \frac{\sigma_{e}^{2} + 288 \sigma_{B}^{2}}{\sigma_{e}^{2} + 288 \sigma_{D}^{2}} = \frac{\sigma_{e}^{2} + 288 \sigma_{E}^{2}}{\sigma_{e}^{2} + 288 \sigma_{E}^{2}} = \frac{\sigma_{e}^{2} + 288 \sigma_{E}^{2}}{\sigma_{e}^{2} + 192 \sigma_{G}^{2}} = \frac{\sigma_{e}^{2} + 192 \sigma_{G}^{2}}{\sigma_{e}^{2}} = \frac{\sigma_{e}^{2} + 192 \sigma_{G}^{2}}{\sigma$	σ (mm) 0.0004 NaN NaN 0.0009 0.0394 NaN 0.0013	

表3 円筒ポイント(直径)及び(真円度)の結果

円筒ボイント(直径) (mm ²)							
Factor	f	S	V	F	E(V)	σ (mm)	
A チップ径(mm)	0	0.00	0.00000	0.00	$\sigma e^2 + 72 \sigma A^2$	0.0000	
B 速度(mm/s)	0	0.00	0.00000	0.00	$\sigma e^2 + 72 \sigma B^2$	0.0000	
C 測定力(N)	0	0.00	0.00000	0.00	$\sigma e^2 + 72 \sigma c^2$	0.0000	
D スタイラスの向き	1	0.00	0.00000	27.29	$\sigma e^2 + 36 \sigma D^2$	0.0000	
E 材質	1	0.00	0.00000	3.03	$\sigma e^2 + 36 \sigma E^2$	0.0000	
F 位置	5	0.29	0.05776	3.5E+07	σ_e^2 +12 σ_F^2	0.0694	
G 繰り返し(times)	2	0.00	0.00000	2.36	$\sigma e^2 + 24 \sigma G^2$	0.0000	
e 誤差	62	0.00	0.00000	-	σ_e^2	0.0000	
T 合計	71	0.29	-	-			

円筒ポイント(真円度) (mm ²)							
Factor	f	S	V	F	E(V)	σ (mm)	
A チップ径(mm)	0	0.00	0.00000	0.00	σ_e^2 +72 σ_A^2	NaN	
B 速度(mm/s)	0	0.00	0.00000	0.00	σ_e^2 +72 σ_B^2	NaN	
C 測定力(N)	0	0.00	0.00000	0.00	$\sigma_e^2 + 72 \sigma_c^2$	NaN	
D スタイラスの向き	1	0.00	0.00000	0.70	σ_e^2 +36 σ_D^2	NaN	
E 材質	1	0.00	0.00000	1.25	$\sigma e^2 + 36 \sigma E^2$	NaN	
F 位置	5	0.09	0.01756	7032.50	$\sigma_e^2 + 12 \sigma_F^2$	0.0383	
G 繰り返し(times)	2	0.00	0.00000	0.01	$\sigma e^2 + 24 \sigma G^2$	NaN	
e 誤差	62	0.00	0.00000	-	σ_e^2	0.0016	
T 合計	71	0.09	-	-			

表4 球スキャニング(直径)及び(真円度)の結果

球スキャニング(直径) (mm ²)						
Factor	f	S	V	F	E(V)	σ (mm)
A チップ径(mm)	1	0.00	0.00000	25.38	$\sigma e^2 + 24 \sigma A^2$	0.0000
B 速度(mm/s)	0	0.00	0.00000	0	$\sigma e^2 + 24 \sigma B^2$	0.0000
C 測定力(N)	0	0.00	0.00000	0	$\sigma e^2 + 24 \sigma c^2$	0.0000
D スタイラスの向き	1	0.00	0.00000	0.10	$\sigma e^2 + 24 \sigma D^2$	0.0000
E 繰り返し(times)	2	0.00	0.00000	0.05	σ_e^2 +16 σ_E^2	0.0000
e 誤差	42	0.00	0.00000	-	σ_e^2	0.0000
T 合計	47	0.00	-	-		

球スキャニング(真円度) (mm ²)						
Factor	f	S	V	F	E(V)	σ (mm)
A チップ径(mm)	1	0.00	0.00000	8.58	σ_e^2 +24 σ_A^2	0.0000
B 速度(mm/s)	0	0.00	0.00000	0	σ_e^2 +24 σ_B^2	0.0000
C 測定力(N)	0	0.00	0.00000	0	σ_e^2 +24 σ_c^2	0.0000
D スタイラスの向き	1	0.00	0.00000	0.04	σ_e^2 +24 σ_D^2	0.0000
E 繰り返し(times)	2	0.00	0.00000	0.27	σ_{e}^{2} +16 σ_{E}^{2}	0.0000
e 誤差	42	0.00	0.00000	-	σ_e^2	0.0000
T 合計	47	0.00	-	-		

項目が直径と真円度で因子 F:位置と因子 E:材質の分 散比 (F 値) が大きいがこれは作為的に表面粗さを変え たためであり当然の結果である。また、円筒スキャニン グの真円度で因子 A:チップ径の分散比が 28.23、円筒ポ イントの直径で因子 D:スタイラスの向きの分散比が 27.29 であり F表の信頼限界 5%で有意と判定された。し かし、円筒スキャニングと円筒ポイント及び球スキャニ ングにおいて誤差分散 Ve が非常に小さいことから見か け上分散比が大きく算出されていると予想されるため、 以後は期待値 E (V) から算出した標準偏差 σ で直接的 に因子の効果とそのばらつきの大きさを判断する。ここ で NaN (Not a Number) とは計算出来ない程小さい数値 を意味する。測定方法が円筒スキャニングはすべての因 子で複数の水準を割り付けたため因子内の水準の効果が

					(mm)
Method	Height	Diameter	Roundness	Х	Y
Wiethod	Treight	Diameter	Roundiness	coodinate	coordinate
	H1	100.0146	0.0055	-0.0041	-0.0022
	H2	99.8260	0.1096	0.0009	0.0000
円筒スキャ	H3	99.8259	0.1069	-0.0019	-0.0001
ニング:sc	H4	99.8897	0.0597	-0.0012	-0.0001
	H5	99.8895	0.0621	-0.0025	0.0000
	H6	99.9163	0.0441	-0.0032	0.0000
	H1	100.0125	0.0054	0.0001	0.0001
	H2	99.8256	0.1052	0.0007	0.0001
円筒ポイン	H3	99.8256	0.1048	-0.0020	0.0000
ŀ:po	H4	99.8914	0.0576	-0.0013	0.0000
	H5	99.8915	0.0596	-0.0028	-0.0002
	H6	99.9193	0.0422	-0.0032	0.0000
	H1	0.0020	0.0001	-0.0043	-0.0023
	H2	0.0004	0.0044	0.0002	-0.0001
Diff=	H3	0.0003	0.0021	0.0001	-0.0001
sc-po	H4	-0.0016	0.0020	0.0001	-0.0001
	H5	-0.0021	0.0025	0.0003	0.0001
	H6	-0.0031	0.0019	0.0001	-0.0001
Average of	of Diff	-0.0007	0.0022	-0.0006	-0.0004

判定できる。その結果、作業者の判断で割り付けた因子 A、B、C、Dは oが非常に小さく因子内の水準間で有意 差が無い。図表として掲載していないが円筒スキャニン グと円筒ポイントでの因子 E: 材質のσは測定項目の中 心座標 Y の場合に NaN であるのに対し、測定項目の中 心座標 X では 0.010mm 程度の大きな値であった。これ は、プロトコルで円筒ワークピースの空間軸をZ軸とX 軸の2水準で測定する指示があった。 空間軸が Z 軸の場 合の中心座標 X とは MCS(機械座標系)の X 軸による 測定、空間軸がX軸の場合の中心座標XとはMCSがZ 軸により測定が行われていた。対して中心座標 Y では空 間軸がZ軸とX軸のいずれの場合でもMCSのY軸で測 定が行われていたため、MCSの異なる2軸を使用した中 心座標 X で因子 E: 材質の σ が大きくなったと推測され る。球スキャニングでは、全ての因子の σ が 0.0000mm (影響を与えない非常に小さい数値)となり動的測定の 影響による誤差は見られなかった。

本実験の要点は動的な走査測定と離散的な点測定の 場合の測定のばらつきの比較であり以下に考察した。測 定項目が直径の場合に円筒スキャニングの因子 F:位置 の σ は 0.0698mm、円筒ポイントの因子 F:位置の σ は 0.0694mm となり同等の値となった。また、測定項目が 真円度の場合に円筒スキャニングの因子 F:位置の σ は 0.0394mm、円筒ポイントの因子 F:位置の σ は 0.0383mm となりこちらも同等の値となった。この結果、動的な測 定方法に起因する誤差の発生が懸念されたスキャニング 測定は離散的な点測定の場合と同等のばらつきで測定が 行われていたことから、動的な影響の誤差は非常に小さ いと言える。

5-2 絶対値の比較

表5に高さ毎に平均化した円筒スキャニングと円筒ポ

表5 円筒スキャニングと円筒ポイントの絶対値比較

イント及び両者の絶対値の差を示す。両者の差は、直径 が-0.0007mm であり動的な測定方式による絶対値での誤 差は表れていない。真円度は 0.0022mm となり円筒スキ ャニングの方が大きく算出された。これは、スキャニン グ測定はサンプリング周期が密な測定方法であるため表 面粗さの山から谷までが高密度で測定された良い効果で あると推測される。X、Y 座標値は円筒スキャニングと 円筒ポイントの差は X 座標で-0.0006mm、Y 座標で -0.0004mm となり絶対値での差は見られなかった。

6 結 言

スキャニング測定は、従来は連続形状の評価にのみ使 用されて来たが、高密度な点測定による高精度測定への 適用が期待されている。ここでは、点測定とスキャニン グ測定を比較した結果、以下の結論が得られた。

(1) 円筒形状ワークピースを使用して動的なスキャニン グ測定と離散的な点測定の誤差傾向と誤差の大きさを 分散分析により比較した結果、ばらつきの大きさは同 等であることからスキャニング測定での動的誤差は非 常に小さい。

(2) 絶対値で比較した場合は、スキャニングと点測定で は直径の差は-0.0007mm となり動的な測定方式による 誤差は表れていなかった。真円度ではスキャニング測 定はサンプリング周期が密な測定方法であるため、高 密度な測定が行われた結果、スキャニング測定が 0.0022mm 大きな値となり精密さが向上していると推 測される。

文 献

1) 田口玄一: 第3版実験計画法(上)、丸善(1992)

謝 辞

本研究は、産業技術連携推進会議知的基盤部会計測分 科会形状計測研究会の共同研究として行われた。実験を 行うにあたり本共同研究に参加された NMIJ/AIST、公設 試及び企業の研究員の方々には貴重なご指導を頂き、こ の場を借りて感謝を表す。