平成16年度試験研究成果書

<table>
<thead>
<tr>
<th>区分</th>
<th>指導</th>
<th>題名</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ダッチライト型ガラス温室におけるトマト養液栽培の地域適応性</td>
</tr>
</tbody>
</table>

[要約] ダッチライト型ガラス温室は、冬期では環境制御により、トマト生産に適した環境を創出し、越冬する周年栽培作型では、温差管理条件で商品果収量が25t/10aに達した。しかし夏期においては、室温が経済的な生産限界温度を上回る高湿となり、その状態は日中、長時間維持される傾向が高い。

また気象的観点で見た場合、本県沿岸中南部、内陸南部であれば、ダッチライト型ガラス温室におけるトマト栽培作が経済的に成立すると推察される。

キーワード：ダッチライト型ガラス温室、トマト栽培作、暖房デジタル化、園芸試作部南部園芸研究室

背景とねらい
ダッチライト型ガラス温室（以下ガラス温室）におけるトマト栽培作は、生理生産に適応した環境（温度、溼度、養液管理）をコンピュータ制御で管理創出することにより、効率的な生産が可能である。そのため近年では宮城県においても大規模ロックウォール栽培施設を利用したトマト生産が設立されている。岩手県では大規模な養液栽培施設をこれまで導入の経験はなく、果としての大規模養液栽培技術に関する基礎的な知見がない。そこで県南沿岸部の冬期高温な気象条件を生かしたトマト栽培作の実証により、本県での養液栽培作導入の知見を得ることを目的とする。

成果の内容
(1) トマト栽培作（秋定植−翌年初夏まで収穫）の収量
 夜間最低温度13℃、培地加温18℃の温差管理条件（図1）下で、商品果収量が25t/10aに達し、培地加温を行わなかった場合に比べ増収効果が見られる（表1）。

(2) ガラス温室の温度推移特性
 冬期のガラス温室はパイプハウスと比べ、環境制御が容易で、トマト生産に適した温度維持（20℃〜25℃）が図られる（図2）。
 夏季においては、比較的冷涼な県南沿岸部の室温がトマトの経済的な生産が可能な限界温度を上回る高湿となり、その状態は日中、長時間維持される傾向が高い（図3）。
 ユ. 夏秋作型では多雨高湿となる年（平成13, 14年）では、ガラス温室中特に高湿となるため（表2）、小玉果と規格外果が増加する。そのためガラス温室中では夏越しぶる作型は難しい（表3）。

(3) ガラス温室導入の地域適応性
 経済的に成立しているガラス温室導入業者のある宮城県築館地区を基準に、本県各地の暖房デジタル化を試験した結果、気象的観点から見た場合、本県では沿岸中南部、内陸南部を適地と推察される（表4）。

成果活用上の留意事項
(1) 本実証では栽培期間中に収穫が低下する原因の一つとして、養液装置の故障によるトラブルが生じるため、養液装置のメンテナンスには細心の注意を払う必要がある。
(2) 本実証では高養4mのガラス温室を試験に供試しているため、高養の違いガラス温室の温度推移特性は成果のデータと異なる可能性がある。
(3) 暖房デジタル化は各地の観測データを基盤に試験しているが、各地全て地域の気象条件を反映しているものではない。実際の導入に当たっては導入地域の日照環境を十分に吟味する必要がある。

成果の活用方法
(1) 適用地帯又は対象者等
 県沿岸中南部、県南部の冬季日照が多い地域
(2) 期待する活用効果
 ダッチライト型ガラス温室の本県における環境特性に適応したトマト養液栽培技術の確立

当該事項に係る試験研究課題
(712)「トマト養液栽培におけるトマト栽培技術の確立実証」
(157)「庭園作物における養液土耕等の施設に対応した生産技術」
(2100)「トマト少量土壌培地栽培技術の確立」

参考資料・文献
試験成績の概要（具体的なデータ）

表1. 周期性栽培作業における時期別収量

<table>
<thead>
<tr>
<th>年次</th>
<th>1月</th>
<th>2月</th>
<th>3月</th>
<th>4月</th>
<th>5月</th>
<th>6月</th>
<th>7月</th>
<th>8月</th>
<th>9月</th>
<th>10月</th>
<th>11月</th>
<th>12月</th>
</tr>
</thead>
<tbody>
<tr>
<td>HⅠ</td>
<td>鳥類</td>
</tr>
<tr>
<td>HⅡ</td>
<td>鳥類</td>
</tr>
</tbody>
</table>

栽培概要
- 定植日：HⅠ：5月2日 HⅡ：4月1日 HⅢ：5月8日 HⅣ：5月1日 HⅣ：5月8日
- 品種：桃太郎
- 栽培方法：ロックウール栽培 流水装置 AMI1000 (VOLMATIC社製)

図1 トマト変温管理技術の温度推移
- 変温管理技術：夜間最低設定温度13℃ 培地加温18℃
- 慣行栽培の夜間最低設定温度18℃ 培地加温無し

図2 外気及び各ハウスの温度推移
- 日時：平成13年4月1日 場所：南部園芸研究室
- ガラス室、ナイルバスともイチゴを栽培。最低気温10℃に設定

図3 夏秋栽培作業における収量と規格別収量割合

表2. 夏秋栽培作業における収量と規格別収量割合

<table>
<thead>
<tr>
<th>年次</th>
<th>栽培</th>
<th>品種</th>
<th>鳥類</th>
</tr>
</thead>
<tbody>
<tr>
<td>HⅠ</td>
<td>ガラス室</td>
</tr>
</tbody>
</table>

ガラス室、ナイルバスともイチゴを栽培。最低気温10℃に設定

表3. 場所別および温度別年間暖房デグリアー試算値

<table>
<thead>
<tr>
<th>県</th>
<th>地域</th>
<th>各最低設定温度の暖房デグリアー</th>
<th>設定生産法人</th>
</tr>
</thead>
<tbody>
<tr>
<td>宮城県</td>
<td>塩釜</td>
<td>冬</td>
<td>サンフレッシュ松島、七ヶ浜</td>
</tr>
<tr>
<td>群馬県</td>
<td>群馬</td>
<td>大利川</td>
<td>サンアグリしわひめ</td>
</tr>
<tr>
<td>岩手県</td>
<td>岩手</td>
<td>宮古</td>
<td></td>
</tr>
<tr>
<td></td>
<td>内陸部</td>
<td></td>
<td></td>
</tr>
<tr>
<td>福島県</td>
<td>千種</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>一関</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

気象データは1981年-2017年までの観測データから導き出した年間データを用いた。
暖房デグリアーとは、温室と外気温との差を暖房している間積算したものでDH = H - Lとしてあらわされる。

表4. ガラス室内で高湿以上を記録した日数

<table>
<thead>
<tr>
<th>温度</th>
<th>1日</th>
<th>2日</th>
<th>3日</th>
<th>4日</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%以上</td>
<td>1日</td>
<td>2日</td>
<td>3日</td>
<td>4日</td>
</tr>
</tbody>
</table>

表5. 外気及び各ハウスの温度推移
- 日時：平成13年4月1日 場所：南部園芸研究室
- ガラス室、ナイルバスともイチゴを栽培。最低気温10℃に設定