（資 料）

カラマツ丸太の材質指標と
集成材用ラミナの強度性能の関係

谷内 博規*, 後藤 幸広†, 竹田 光一**, 吉田 佳右**

Relationship between material indexes of larch logs and strength properties of lamina for glulam

Hironori TANIUCHI, Yukihiro GOTO, Koichi TAKEDA, Keisuke YOSHIDA

要 旨

素材生産現場において、簡易な方法でカラマツ丸太から高強度ラミナを得るための材質指標を明らかにするため、県内5地域から、カラマツ丸太を供試し、径級、心材率、年輪幅、動的ヤング係数の測定の後、製材されたラミナの年輪幅、観材率、動的ヤング係数の測定を行った。

その結果、集成材JASDL125以上のラミナを得る場合の丸太の材質指標は、軸から15年輪（若しくは8cm）の未成熟と考えられる部位を除いた心材部において、年輪幅が1.5～3.5mmとされる部位となった。

キーワード：カラマツ，丸太，集成材用ラミナ，動的ヤング係数，年輪幅

目 次

1 はじめに ... 26
2 実験方法
 2.1 供試材料 .. 26
 2.2 カラマツ丸太の動的ヤング係数 ... 26
 2.3 カラマツラミナの動的ヤング係数 ... 26
 2.4 ラミナの年輪幅、観材率 .. 26
3 結果
 3.1 カラマツ丸太のEfrの分布と材質指標 ... 26
 3.2 丸太Efrと材質指標の関係 .. 27
 3.3 カラマツラミナのEfrの分布 .. 27
 3.4 ラミナのEfrと曲げヤング係数の関係 ... 29
 3.5 ラミナEfrと材質指標の関係 ... 30
4 まとめ ... 31
引用文献 .. 31

*：現森林整備課
**：ノースジャパン素材流通協同組合
1 はじめに
岩手県内でカラマツは、合板、集成材、製材等に利用される。特に集成材、製材については、高い強度を持つ製材品の需要が高く、その強度性能は、試験機やグレーディングマシンを利用して評価することができるが、素材生産現場や伐木場において、機械を用いた丸太の強度性能を評価するのは難しい。そのため、素材生産現場において、簡易な方法で丸太の強度性能を判断する材料指示を求められている。

これまで、藤原ら6) は、集成材用木材の選別を目的とし、丸太の動的ヤング係数とラミナの曲げヤング係数との関係を検討している。また、橋爪5) は、径級、平均年輪幅、密度、動的ヤング係数などを材料指示として、ラミナの強度性能との関係を検討している。これらの中で、カラマツは、他の樹種に比べ、樹幹内の強度性能の変動が大きく、樹心近くのヤング係数は低く、樹皮付近のヤング係数は高いことが知られており、この原因は、樹心付近の未成熟部の影響と考えられている5)6)。未成熟部とし、樹齢を経るともに仮道管一定の長さになるが、その過程において、短い仮道管で構成される部位であり、カラマツの未成熟部は、樹皮から概ね15年輪、約5cmといわれ、曲げ、引張強度性能が、成熟部に比べ低下するとされている4)。このことから、未成熟部を加味した、径級、心材率、平均年輪幅、乾燥材などの基本的な形質の把握も丸太の強度性能を判断する指標として重要と考えられる。

今回、県内5地域から、カラマツ丸太を供試し、径級、心材率、年輪幅、動的ヤング係数の測定を行った後、カラマツラミナの年輪幅、乾燥材、動的ヤング係数を測定し、丸太の材質指標とラミナの動的ヤング係数との関係から、高精度ラミナを得るための丸太の材質指標の検討を行った。

2 実験方法

2.1 供試材
岩手県内の二戸、葛巻、遠野、軽米、岩泉地域から各30本、合計150本のカラマツ丸太（長さは、4.0～4.2m、直径20～33cm、年輪数26～67）を供試した。

2.2 カラマツ丸太の動的ヤング係数
丸太は、長さ、元末、未末の長さ、径部、心材の長径、短径および年輪数を測定し、クレーンスケール（A&D 社製FJ-500）で重量を測定した後、容積密度を算出した。その後、FFT アナライザー（小野測器社製GF-42202）を用い、固有振動数を測定し、経時変化3)により、丸太の動的ヤング係数（以下、丸太Efr）を以下のとおり算出した。

動的ヤング係数（GPa） = (2f_l)^2 / ρ
f: 固有振動数(Hz), l: 材長(m), ρ: 密度(g/cm³)

2.3 カラマツラミナの動的ヤング係数
測定した丸太を材質・乾燥し、1008枚のカラマツラミナ（断面寸法115×30mmおよび100×25mm、含水率11.0%）を調製した。ラミナの寸法・重量を測定の後、2.2 と同様の方法で固有振動数を測定し、ラミナの動的ヤング係数（以下、ラミナ Efr）を算出した。また、測定の際、ラミナの乾燥の有無も調査した。

2.4 ラミナの年輪幅・乾燥材
葛巻、遠野、軽米地域のラミナから各30枚を無作為に抽出し、ラミナの木質面を撮影した。撮影した写真上、半径方向に年輪数が最大となるよう線を引き、線上にかかる年輪数、平均厚を測定し、平均年輪幅、乾燥材を算出した。

3 結果と考察
3.1 カラマツ丸太のEfr の分布と材質指標
表1 にカラマツ丸太の材質指標の測定結果を示す。平均直径、年輪幅については、地域ごとで若干の差が

<p>| 表1 カラマツ丸太の直径、年輪幅、心材率、密度、丸太Efr |
|-----------------|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>地域</th>
<th>直径(cm)</th>
<th>年輪幅(mm)</th>
<th>心材率(%)</th>
<th>密度(kg/m³)</th>
<th>丸太Efr(GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均</td>
<td>26.0</td>
<td>6.0</td>
<td>17.3</td>
<td>68.0</td>
<td>6.8</td>
</tr>
<tr>
<td>二戸</td>
<td>26.7</td>
<td>7.9</td>
<td>5.3</td>
<td>10.6</td>
<td>71.3</td>
</tr>
<tr>
<td>葛巻</td>
<td>26.2</td>
<td>9.1</td>
<td>7.1</td>
<td>17.5</td>
<td>67.5</td>
</tr>
<tr>
<td>遠野</td>
<td>27.1</td>
<td>8.2</td>
<td>6.0</td>
<td>16.7</td>
<td>68.6</td>
</tr>
<tr>
<td>軽米</td>
<td>24.7</td>
<td>10.8</td>
<td>6.1</td>
<td>9.8</td>
<td>66.6</td>
</tr>
<tr>
<td>岩泉</td>
<td>25.4</td>
<td>9.6</td>
<td>5.8</td>
<td>11.5</td>
<td>66.2</td>
</tr>
</tbody>
</table>

C.V: 変動係数
異はあるが、類似した値を示している。一方、密度、丸太 EFr については、若干高い値を示す地域もある。このことについては、丸太の含水率が影響していると考えられるが、今回では丸太の含水率を測定していないため、原因は明らかでない。

図 1 に丸太 EFr を地域別に示す。地域別で丸太 EFr の分布は異なるが、全体では丸太 EFr は 8～15GPa に分布し、平均値 12.23GPa となっている。

北海道の報告9では丸太の平均直径 35.4cm、密度 591kg/m³ のとき、丸太 EFr は 7～13GPa に分布し、平均値 10.1GPa となっている。また、長野市の報告10では、丸太の平均直径 25.4cm、密度 654kg/m³ のとき、丸太 EFr は、概ね 8～14GPa に分布し、平均値 11.0GPa となっている。今回の結果は、長野県の報告と類似している。

3.2 丸太 EFr と材質指標の関係

表 2 にカラマツ丸太 150 本の EFr、密度、年輪幅、直径、心材率値の単相関係数を示す。丸太 EFr と危険率 1%で有意な相関を示したのは、密度と年輪幅であった。密度については、Fr 算出の要素であるため、相関の高いことは当然である。また、年輪幅については、相関は認められるが、相関係数 0.29 とそれ程高い値は示していない。

橋爪11は、カラマツ丸太 52 本の木口径、密度、年輪幅を材質指標として、動的ヤング係数との相関を検討し、年輪幅と動的ヤング係数には高い相関 (r = 0.479) が認められると報告している。また、丸太の径が大きいほど、樹皮と樹皮下で採取されたラミナの変曲点ヤング係数の差は大きくなるとも報告している。

このことから、年輪幅と丸太 EFr、密度の間で相関は認められるが、それ程高い相関を示さないことについては、要因は様々である。丸太内には成熟部、不成熟部が分布しており、成熟度の増加に伴う丸太の密度、Fr の上昇の効果は、丸太断面全体では薄まることであると考える。

3.3 カラマツラミナの EFr の分布

表 3 にカラマツラミナの概要を示す。ラミナ枚数は遠野、二戸地域では、225、226 枚と多く、他の地域は 200 枚以下となっている。これは丸太の直径と同様の傾向となっている。また、ラミナ割合は平均 44.9% となり、表 1 の心材率 68.0% により低い値となった。このことから、製材されるラミナは、ほとんど辺材を含まないことを示す。さらに、ラミナ EFr の C.V（変動係数）は 22.9% を示し、表 1 の丸太 EFr
の C.V12.3%より高くなった。このことは、ラミナの Efr のバラツキが、丸太のそれより大きいことを示す。

次に、図2にカラマツラミナの Efr の分布を地域別に示す。ラミナ全体の分布は、Efr 12GPa に極大値を持ち、8～11GPa にショルダーをもつ形状となっている。各地域の分布形も同様の傾向となっている。松本ら7)によれば、カラマツの軸付近から採材されたラミナは未熟材比率が高くなるため、丸太よりラミナ Efr が低くなる傾向が明らかであると報告している。今回の Efr の分布形において、8～11GPa 域にあるショルダーは、軸付近の未熟材に由来するラミナの可能性が考えられる。また、ラミナ Efr のバラツキが大きかった理由は未熟材部位が原因と考えられる。

そこで、軸の有無によるラミナ Efr の分布を図3に示す。軸を含むラミナの Efr は6～16GPa に分布し、8～9GPa にピークをもつ分布形となった。この傾向は各地域とも同様であり、軸を含むラミナの枚数も地域によらず50 枚前後となっている。このことは、ラミナ製材における丸太の木取り方法が同一であることに起因するが、軸を含まないラミナであっても、Efr が低いラミナは未熟材部位の影響を受けるものと推測される。

また、軸を含まないラミナは7～21GPa に分布し、12～13GPa をピークとする分布形となった。軸を含まないラミナの枚数は地域によって異なり、二戸、

<table>
<thead>
<tr>
<th>地区</th>
<th>ラミナ枚数</th>
<th>ラミナ分布 (%)</th>
<th>ラミナEfr (GPa)</th>
<th>C.V (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>全体</td>
<td>1008</td>
<td>44.9</td>
<td>12.3</td>
<td>22.9</td>
</tr>
<tr>
<td>二戸</td>
<td>226</td>
<td>48.5</td>
<td>11.9</td>
<td>21.5</td>
</tr>
<tr>
<td>萩原</td>
<td>192</td>
<td>42.9</td>
<td>12.2</td>
<td>23.4</td>
</tr>
<tr>
<td>長谷</td>
<td>225</td>
<td>46.2</td>
<td>13.2</td>
<td>23.3</td>
</tr>
<tr>
<td>岩泉</td>
<td>178</td>
<td>43.1</td>
<td>11.6</td>
<td>22.4</td>
</tr>
</tbody>
</table>

C.V：変動係数

図2 カラマツラミナの Efr（動的ヤング係数）の分布
図3 餓の有無によるラミナEfrの分布の比較

遠野、葛西、岩塚、静岡で174, 166, 143, 135, 119枚となった。この傾向は、丸太の直径、材質と類似した。換言すれば、径級が大きい丸太からは、餓を含まないラミナが多く製作できるということになる。

さらに、餓を含むラミナと餓を含まないラミナのEfrのピークを比較すると、餓を含むラミナは4割程度低い値を示す結果となった。

これらのことから、カラマツ丸太内において、未熟材と成熟材のEfr（強度）は大きく異なるため、餓を含むラミナではラミナの比に比べEfrが4割程度低く、餓を含むラミナは丸太の直径にも一定量含まれる。また、餓を含まないEfrの高いラミナは、丸太の直径が大きければ、製作される枚数も増えることが明らかとなった。

藤原ら6, 松本ら7の報告によると、カラマツ丸太からラミナまでの製造工程において、ラミナのヤング係数は餓から樹皮側に向かって上昇し、同一の丸太から採取されたラミナでもヤング係数の変動が大きかったとされている。今回の結果もこれまでの報告と一致するものとなった。

3.4 ラミナのEfrと曲げヤング係数の関係

今回、実験に供したラミナEfrから、集成材JASのラミナ強度分布を推定するため、4枚ラミナの曲げヤング係数と動的ヤング係数の比較を行った。

曲げヤング係数の測定に当たっては、集成材JASの曲げB試験（中央集中荷重）2を行った。試験は、スパン3985mm、初期荷重5kg、最終荷重8kgもしくは10kgで行い、荷重直下のラミナ変位を測定した。なお、ラミナ含水率は11.0%であった。

図4にラミナEfrと曲げヤング係数の関係を示す。今回の結果では、ラミナEfrに比べ動的ヤング係数
は約5%低い値を示し、関係式 $y = 0.963x - 0.3805$ （相関係数 $r = 0.97$）を得た。相関係数は危険率5%で有意な相関となった。一般に、動的弾性係数は静的弾性係数より5〜10%程度大きな値を示す2）と言われており、今回の関係式を使用して、ラミナEfrから曲げヤング係数の推定を行い、さらに、集成材JASに基づきラミナの等級区分を行い、L125以上の等級のラミナ割合を地域別に表4に示す。

L125以上の等級のラミナとは、ラミナEfr13. 3GPa以上のラミナを示す。L125以上のラミナの出現割合は、一覧すると、表3のラミナEfrの平均値と同様の傾向を示している。しかし、これまでの結果から、ラミナ全体のEfrの平均値は、ラミナEfrの値が低い側では全体を含み、高Efrラミナが説明されているとは限らないと考えられる。

したがって、ラミナの年輪幅や乾燥材とラミナEfrの関係と検討する必要がある。

3.5 ラミナEfrと材質指標の関係

図5にラミナ年輪幅とラミナEfrの関係、図6にラミナ乾燥材とラミナEfrの関係を示す。ラミナEfrは、年輪幅、乾燥材と危険率1%で有意な相関を示した。集成材JASにおけるラミナ等級区分L125相当のラミナEfrは13. 3GPaであり、13. 3GPaとなるラミナの年輪幅乾燥材は、各関係式から、3. 4mm以下、33. 9%と低かった。一覧すると、丸太において、年輪幅3.5mm内でもはく乾燥材25%以上となる部位は高い強度を有する部位と考えられる。

朱3）によると、未成熟材部では、年輪幅の増加に伴い乾燥材は減少し、成熟材部では、年輪幅が1. 5mm以上であれば、乾燥材はほぼ一定になるといわれている。また、未成熟材部では高い成長速度が材の密度低下をもたらすのに対して、成熟材部では、成長速度の増加に伴って乾燥材も増加し、結果として密度と乾燥材は低下しないとされている。今回の結果は、内容の有無によりラミナを評価したため、朱の報告と傾向は異なるが、少なくとも年輪幅3.5mm以内の部位は、高い強度を有する指標として有効であると考える。

今回の結果とこれまでの知見を併せて検討すると、
(1) 強度の低い未成熟材部については、塩倉の報告3）を引用し、未成熟部位を基準から15年輪（約8cm）とするでで成熟材部を除外。
(2) 乾燥材については、朱の報告3）を引用し、成熟材部では年輪幅が1. 5mm以上であれば、乾燥材はほぼ一定とすることで乾燥材を考慮しない。
③ 年輪幅については、今回の結果を踏まえ、高い強度を有する部位は年輪幅3.5mm以内。これにより、素材生産現場での丸太の強度を判断する指標は、幅から15年輪（若しくは8cm）を除く部位の年輪幅1.5〜3.5mmを目安とするのが妥当と考える。

4 まとめ
（1）カラマツ丸太のEfrが高くても、成熟部位は強度が低いため、全ての丸太において、強度の低いラミナは一定量出現する。
（2）心材率はラミナ製品歩留りが高いため、辺材部を含むラミナは非常に少ない。したがって丸太の段階で辺材部の材質指標を考慮する必要はない。
（3）高強度ラミナが製材される丸太は、樹皮に近い心材部において、年輪幅が小さい部位が多く含むもの。
（4）集成材JASのL125以上の高強度ラミナは、幅から15年輪（若しくは8cm）を除く部位の年輪幅1.5〜3.5mmを目安とする。

引用文献
1) 公益財団法人日本住宅・木材技術センター（2011） 構造用木材の強度試験マニュアル：p59-63。
2) 構造用集成材の日本農林規格 最終改正平成15年2月27日農林水産省告示235号：p18。
3) 塩倉克義（1982） 針葉樹乾材における未成熟材の区分とその範囲 木村学会誌 Vol.28 No.2：p85-90。
4) 朱 建軍（2002） 信州産高樹齢カラマツ造林木の成長と材質 信州大学農学部演習林報告 第38号：p81-91。
5) 橋爪文夫（1998） 長野県産カラマツ構造材の強度特性に関する研究 長野県林業総合センター研究報告 第13号：p47-53。
6) 藤原洋哉、細谷俊人、千葉宗昭、工藤 修（1994） 打撃音によるヤング係数を用いた集成材用原木の選別 北海道立林産試験場報 第8巻 第6号：p25-28。
7) 松本和茂、安久津久、藤原良典、堀部敏（2008） 北海道カラマツの集成材ラミナとしての性能評価 北海道立林産試験場報 第22巻 第2号：p24-28。